1. Determine the perimeter and area of rectangles A and B.

 A = ____________
 P = ____________
 A = ____________
 P = ____________

2. Determine the perimeter and area of each rectangle.
 a. 3 cm 7 cm
 P = ____________
 A = ____________
 b. 4 cm 9 cm
 P = ____________
 A = ____________

3. Determine the perimeter of each rectangle.
 a. 149 m
 P = ____________
 b. 2 m 10 cm
 P = ____________
4. Given the rectangle's area, find the unknown side length.

 a. \[
 \begin{array}{c}
 6 \text{ cm} \\
 \text{6 square cm} \\
 \times \text{ cm}
 \end{array}
 \]
 \[x = \underline{}\]

 b. \[
 \begin{array}{c}
 5 \text{ m} \\
 \text{25 square m} \\
 \times \text{ m}
 \end{array}
 \]
 \[x = \underline{}\]

5. Given the rectangle's perimeter, find the unknown side length.

 a. \[
 \begin{array}{c}
 P = 180 \text{ cm} \\
 40 \text{ cm}
 \end{array}
 \]
 \[x = \underline{}\]

 b. \[
 \begin{array}{c}
 P = 1,000 \text{ m} \\
 \times \text{ m} \\
 150 \text{ m}
 \end{array}
 \]
 \[x = \underline{}\]

6. Each of the following rectangles has whole number side lengths. Given the area and perimeter, find the length and width.

 a. \[
 \begin{array}{c}
 A = 32 \text{ square cm} \\
 P = 24 \text{ cm}
 \end{array}
 \]
 \[l = \underline{} \quad w = \underline{}\]

 b. \[
 \begin{array}{c}
 A = 36 \text{ square m} \\
 P = 30 \text{ m}
 \end{array}
 \]
 \[w = \underline{} \quad l = \underline{}\]
1. A rectangular pool is 7 feet wide. It is 3 times as long as it is wide.
 a. Label the diagram with the dimensions of the pool.

 [Diagram]

 b. Find the perimeter of the pool.

2. A rectangular bumper sticker is 3 inches long. It is 4 times as wide as it is long.
 a. Draw a diagram of the bumper sticker and label its dimensions.

 b. Find the perimeter and area of the bumper sticker.
3. The area of a rectangle is 36 square centimeters and its length is 9 centimeters.
 a. What is the width of the rectangle?
 b. Elsa wants to draw a second rectangle that is the same length but is 3 times as wide. Draw and label Elsa’s second rectangle.
 c. What is the perimeter of Elsa’s second rectangle?

4. The area of Nathan’s bedroom rug is 15 square feet. The longer side measures 5 feet. His living room rug is twice as long and twice as wide as the bedroom rug.
 a. Draw and label a diagram of Nathan’s bedroom rug. What is its perimeter?
 b. Draw and label a diagram of Nathan’s living room rug. What is its perimeter?
c. What is the relationship between the two perimeters?

d. Find the area of the living room rug using the formula $A = l \times w$.

e. The living room rug has an area that is how many times that of the bedroom rug?

f. Compare the way the perimeter changed with the way the area changed between the two rugs. Explain what you notice using words, pictures, or numbers.
Solve the following problems. Use pictures, words, or diagrams to help you solve.

1. Katie cut out a piece of wrapping paper that was 2 times as long and 3 times as wide as the box that she was wrapping. The box was 5 inches long and 4 inches wide. What is the perimeter of the wrapping paper that Katie cut?

2. Alexis has a piece of red paper that is 4 centimeters wide. Its length is twice its width. She glues a piece of blue paper on top of the red piece measuring 3 centimeters by 7 centimeters. How many square centimeters of red paper will be visible on top?

3. Brinn’s kitchen has an area of 81 square feet. The kitchen is 9 times as many square feet as Brinn’s pantry. If the pantry is 3 feet wide, what is the length of the pantry?

4. The length of Marshall’s poster is 2 times its width. If the perimeter is 72 inches, what is the area of the poster?
Name ____________________________ Date __________________

Example:

\[5 \times 10 = \boxed{50}\]

\[5 \text{ ones} \times 10 = \boxed{5\text{ tens}}\]

Draw number disks and arrows as shown to represent each product.

1. \(7 \times 100 = \underline{\hspace{2cm}}\)

 \(7 \times 10 \times 10 = \underline{\hspace{2cm}}\)

 \(7 \text{ ones} \times 100 = \underline{\hspace{2cm}}, \underline{\hspace{2cm}}\)

2. \(7 \times 1,000 = \underline{\hspace{2cm}}\)

 \(7 \times 10 \times 10 \times 10 = \underline{\hspace{2cm}}\)

 \(7 \text{ ones} \times 1,000 = \underline{\hspace{2cm}}, \underline{\hspace{2cm}}\)

3. Complete the following equations.

 a. \(8 \times 10 = \underline{\hspace{2cm}}\) b. \(\underline{\hspace{2cm}} \times 8 = 800\) c. \(8,000 = \underline{\hspace{2cm}} \times 1,000\)

 d. \(10 \times 3 = \underline{\hspace{2cm}}\) e. \(3 \times \underline{\hspace{2cm}} = 3,000\) f. \(\underline{\hspace{2cm}} \times 3 = 300\)

 g. \(1,000 \times 4 = \underline{\hspace{2cm}}\) h. \(\underline{\hspace{2cm}} = 10 \times 4\) i. \(400 = \underline{\hspace{2cm}} \times 100\)
Draw number disks and arrows as shown to represent each product.

4. \(15 \times 10 = \underline{} \underline{}\)
 (1 ten 5 ones) \(\times 10 = \underline{} \underline{}\)

5. \(17 \times 100 = \underline{} \underline{}\)
 \(17 \times 10 \times 10 = \underline{} \underline{}\)
 (1 ten 7 ones) \(\times 100 = \underline{} \underline{}\)

6. \(36 \times 1,000 = \underline{} \underline{}\)
 \(36 \times 10 \times 10 \times 10 = \underline{} \underline{}\)
 (3 tens 6 ones) \(\times 1,000 = \underline{} \underline{}\)

Decompose each multiple of 10, 100, or 1,000 before multiplying.

7. \(2 \times 80 = 2 \times 8 \times \underline{}\)
 \(= 16 \times \underline{}\)
 \(= \underline{}\)

8. \(2 \times 400 = 2 \times \underline{} \underline{} \underline{}\)
 \(= \underline{} \underline{} \underline{}\)
 \(= \underline{} \underline{} \underline{}\)

9. \(5 \times 5,000 = \underline{} \underline{} \underline{} \underline{} \underline{}\)
 \(= \underline{} \underline{} \underline{} \underline{} \underline{}\)
 \(= \underline{} \underline{} \underline{} \underline{} \underline{}\)

10. \(7 \times 6,000 = \underline{} \underline{} \underline{} \underline{} \underline{} \underline{}\)
 \(= \underline{} \underline{} \underline{} \underline{} \underline{} \underline{}\)
 \(= \underline{} \underline{} \underline{} \underline{} \underline{} \underline{}\)
Name ____________________________ Date __________________

Draw number disks to represent the value of the following expressions.

1. $5 \times 2 = \underline{\hspace{1cm}}$

 5 times ____ ones is ____ ones.

2. $5 \times 20 = \underline{\hspace{1cm}}$

 5 times ____ tens is ____ ________.

3. $5 \times 200 = \underline{\hspace{1cm}}$

 5 times ____ ________ is ____ ________.

4. $5 \times 2,000 = \underline{\hspace{1cm}}$

 ____ times ____ ________ is ____ ________.
5. Find the product.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 20 \times 9 =</td>
<td>b. 6 \times 70 =</td>
<td>c. 7 \times 700 =</td>
<td>d. 3 \times 900 =</td>
</tr>
<tr>
<td>e. 9 \times 90 =</td>
<td>f. 40 \times 7 =</td>
<td>g. 600 \times 6 =</td>
<td>h. 8 \times 6,000 =</td>
</tr>
<tr>
<td>i. 5 \times 70 =</td>
<td>j. 5 \times 80 =</td>
<td>k. 5 \times 200 =</td>
<td>l. 6,000 \times 5 =</td>
</tr>
</tbody>
</table>

6. At the school cafeteria, each student who ordered lunch gets 6 chicken nuggets. The cafeteria staff prepares enough for 300 kids. How many chicken nuggets does the cafeteria staff prepare altogether?

7. Jaelynn has thirty times as many stickers as her brother. Her brother has 8 stickers. How many stickers does Jaelynn have?

8. The flower shop has 40 times as many flowers in one cooler as Julia has in her bouquet. The cooler has 120 flowers. How many flowers are in Julia's bouquet?
Represent the following problem by drawing disks in the place value chart.

1. To solve 30×60, think:

 $(3 \text{ tens} \times 6) \times 10 = \underline{\hspace{1cm}}$

 $30 \times (6 \times 10) = \underline{\hspace{1cm}}$

 $30 \times 60 = \underline{\hspace{1cm}}$

2. Draw an area model to represent 30×60.

 $3 \text{ tens} \times 6 \text{ tens} = \underline{\hspace{1cm}}$

3. Draw an area model to represent 20×20.

 $2 \text{ tens} \times 2 \text{ tens} = \underline{\hspace{1cm}}$

 $20 \times 20 = \underline{\hspace{1cm}}$
4. Draw an area model to represent 40×60.

$$4 \text{ tens} \times 6 \text{ tens} = \underline{\hspace{1cm}} \underline{\hspace{1cm}}$$

$$40 \times 60 = \underline{\hspace{1cm}}$$

Rewrite each equation in unit form and solve.

5. $50 \times 20 = \underline{\hspace{1cm}}$

$$5 \text{ tens} \times 2 \text{ tens} = \underline{\hspace{1cm}} \text{ hundreds}$$

6. $30 \times 50 = \underline{\hspace{1cm}}$

$$3 \text{ tens} \times 5 \underline{\hspace{1cm}} = \underline{\hspace{1cm}} \text{ hundreds}$$

7. $60 \times 20 = \underline{\hspace{1cm}}$

$$\underline{\hspace{1cm}} \text{ tens} \times \underline{\hspace{1cm}} \text{ tens} = 12 \underline{\hspace{1cm}}$$

8. $40 \times 70 = \underline{\hspace{1cm}}$

$$\underline{\hspace{1cm}} \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \underline{\hspace{1cm}} = \underline{\hspace{1cm}} \text{ hundreds}$$
9. There are 60 seconds in a minute and 60 minutes in an hour. How many seconds are in one hour?

10. To print a comic book, 50 pieces of paper are needed. How many pieces of paper are needed to print 40 comic books?
1. Represent the following expressions with disks, regrouping as necessary, writing a matching expression, and recording the partial products vertically.

 a. \(3 \times 24\)

 b. \(3 \times 42\)

 c. \(4 \times 34\)
2. Represent the following expressions with disks, regrouping as necessary. To the right, record the partial products vertically.

a. 4×27

b. 5×42

3. Cindy says she found a shortcut for doing multiplication problems. When she multiplies 3×24, she says, "3×4 is 12 ones, or 1 ten and 2 ones. Then there's just 2 tens left in 24, so add it up and you get 3 tens and 2 ones." Do you think Cindy's shortcut works? Explain your thinking in words and justify your response using a model or partial products.
1. Represent the following expressions with disks, regrouping as necessary, writing a matching expression, and recording the partial products vertically as shown below.

 a. \(2 \times 424\)

<table>
<thead>
<tr>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>● ● ● ●</td>
<td>●</td>
<td>● ● ●●</td>
</tr>
</tbody>
</table>

 \[
 \begin{array}{c}
 \times 424 \\
 \hline
 \end{array}
 \]

 \[
 2 \times ____ + 2 \times ____ + 2 \times ____
 \]

 \[
 \begin{array}{c}
 \rightarrow 2 \times ____ \text{ ones} \\
 \rightarrow 2 \times ____ \\
 \rightarrow ____ \times ____
 \end{array}
 \]

 b. \(3 \times 424\)

<table>
<thead>
<tr>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
</table>

 \[
 \begin{array}{c}
 \times 424 \\
 \hline
 \end{array}
 \]

 c. \(4 \times 1,424\)
2. Represent the following expressions with disks, using either method shown in the class, regrouping as necessary. To the right, record the partial products vertically.

 a. \(2 \times 617 \)

 b. \(5 \times 642 \)

 c. \(3 \times 3034 \)

3. Every day, Penelope jogs three laps around the playground to keep in shape. The playground is rectangular with a width of 163 meters and a length of 320 meters.

 a. Find the total amount of meters in one lap.

 b. Determine how many meters Penelope jogs in three laps.
1. Solve using each method.

<table>
<thead>
<tr>
<th>Partial Products</th>
<th>Standard Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 46</td>
<td>46</td>
</tr>
<tr>
<td>x 2</td>
<td>x 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Partial Products</th>
<th>Standard Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>b) 315</td>
<td>315</td>
</tr>
<tr>
<td>x 4</td>
<td>x 4</td>
</tr>
</tbody>
</table>

2. Solve. Use the standard algorithm.

 | |
 | a) 232 |
 | x 4 |

 | |
 | b) 142 |
 | x 6 |

 | |
 | c) 314 |
 | x 7 |

 | |
 | d) 440 |
 | x 3 |

 | |
 | e) 507 |
 | x 8 |

 | |
 | f) 384 |
 | x 9 |

3. What is the product of 8 and 54?
4. Isabel earned 350 points while she was playing Blasting Robot. Isabel’s mom earned 3 times as many points as Isabel. How many points did Isabel’s mom earn?

5. To get enough money to go on a field trip, every student in a club has to raise $53 selling chocolate bars. There are 9 students in the club. How much money does the club need to raise to go on the field trip?

6. Mr. Meyers wants to order 4 tablets for his classroom. Each tablet costs $329. How much will all four tablets cost?

7. Amaya read 64 pages last week. Amaya’s older brother, Rogelio, read twice as many pages in the same amount of time. Their big sister, Elianna, is in high school and read 4 times as many pages as Rogelio did. How many pages did Elianna read last week?
1. Solve using the standard algorithm.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>3×41</td>
</tr>
<tr>
<td>c.</td>
<td>7×143</td>
</tr>
<tr>
<td>e.</td>
<td>$4 \times 2,048$</td>
</tr>
<tr>
<td>g.</td>
<td>$8 \times 4,096$</td>
</tr>
</tbody>
</table>
2. One gallon of water contains 128 fluid ounces. Robert’s family brings six gallons of water for the players on the football team. How many fluid ounces are in six gallons?

3. It takes 687 Earth days for the planet Mars to revolve around the Sun once. How many Earth days does it take Mars to revolve around the Sun four times?

4. Tammy buys a 4-gigabyte memory card for her camera. Dijonea buys a memory card with twice as much storage as Tammy’s. One gigabyte is 1,024 megabytes. How many megabytes of storage does Dijonea have on her memory card?
1. Solve the following expressions using the standard algorithm, the partial products method, and the area model.

 a. \(302 \times 8\)

 \[
 8 (300 + 2) \\
 (8 \times __) + (8 \times __)
 \]

 b. \(216 \times 5\)

 \[
 5 (__ + __ + __) \\
 (_ \times __) + (_ \times __) + (_ \times __)
 \]

 c. \(593 \times 9\)

 \[
 _ (__ + __ + __) \\
 (_ \times __) + (_ \times __) + (_ \times __)
 \]
2. Solve using the partial products method.

On Monday 475 people visited the museum. On Saturday there were 4 times as many visitors as there were on Monday. How many people visited the museum on Saturday?

3. Model with a tape diagram and solve.

6 times as much as 384.

Solve using the standard algorithm, the area model, the distributive property, or the partial products method.

4. \(6,253 \times 3 \)

5. 7 times as many as 3,073.

6. A cafeteria makes 2,516 pounds of white rice and 608 pounds of brown rice every month. After 6 months, how many pounds of rice does the cafeteria make? Write your answer as a statement.
Use the RDW process to solve the following problems.

1. The table shows the number of stickers of various types in Chrissy’s new sticker book. Chrissy’s six friends also own the same sticker book. How many stickers do Chrissy and her six friends have altogether?

<table>
<thead>
<tr>
<th>Type of Sticker</th>
<th>Number of Stickers</th>
</tr>
</thead>
<tbody>
<tr>
<td>flowers</td>
<td>32</td>
</tr>
<tr>
<td>smiley faces</td>
<td>21</td>
</tr>
<tr>
<td>hearts</td>
<td>39</td>
</tr>
</tbody>
</table>

2. The small copier makes 437 copies each day. The large copier makes 4 times as many copies each day. How many copies does the large copier make each week?

3. Jared sold 194 Boy Scout chocolate bars. Matthew sold three times as many as Jared. Gary sold 297 fewer than Matthew. How many bars did Gary sell?
4. a. Label the rest of the diagram below. Solve for M.

973 meters

723 meters

M

b. Write your own problem that could be solved using the diagram above.
Solve using the RDW process.

1. A pair of jeans costs $89. A jean jacket costs twice as much. What is the total cost of a jean jacket and 4 pairs of jeans?

2. Sarah bought a shirt on sale for $35. The original price of the shirt was 3 times that amount. Sarah also bought a pair of shoes on sale for $28. The original price of the shoes was 5 times that amount. How much money did the shirt and shoes cost before they went on sale?
3. All 3,000 seats in a theater are being replaced. So far, 5 sections of 136 seats and a sixth section containing 348 seats have been replaced. How many more seats do they still need to replace?

4. Computer Depot sold 762 reams of paper. Paper Palace sold 3 times as much paper as Computer Depot and 143 reams more than Office Supply Central. How many reams of paper were sold by all three stores combined?
Name ____________________________ Date ________________

Solve the following problems. Use the RDW process.

1. Linda makes booklets using 2 sheets of paper. She has 17 sheets of paper. How many of these booklets can she make? Will she have any extra paper? How many sheets?

2. Linda uses thread to sew the booklets together. She cuts 6 inches of thread for each booklet. How many booklets can she stitch with 50 inches of thread? Will she have any unused thread after stitching up the booklets? If so, how much?

3. Ms. Rochelle wants to put her 29 students into groups of 6. How many groups of 6 can she make? If she puts any remaining students in a smaller group, how many students will be in that group?
4. A trainer gives his horse, Caballo, 7 gallons of water every day from a 57-gallon container. How many days will Caballo receive his full portion of water from the container? On which number day will the trainer need to refill the container of water?

5. Meliza has 43 toy soldiers. She lines them up in rows of 5 to fight imaginary zombies. How many of these rows can she make? After making as many rows of 5 as she can, she puts the remaining soldiers in the last row. How many soldiers are in that row?

6. Seventy-eight students are separated into groups of 8 for a field trip. How many groups are there? The remaining students form a smaller group of how many students?
<table>
<thead>
<tr>
<th>Show division using an array.</th>
<th>Show division using an area model.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (24 \div 4)</td>
<td>[Grid of 24 squares]</td>
</tr>
<tr>
<td>Quotient = _______</td>
<td>Can you show (24 \div 4) with one rectangle? ______</td>
</tr>
<tr>
<td>Remainder = _______</td>
<td></td>
</tr>
</tbody>
</table>

2. \(25 \div 4 \)	[Grid of 25 squares]
Quotient = _______	Can you show \(25 \div 4 \) with one rectangle? ______
Remainder = _______	Explain how you showed the remainder:
Solve using an array and area model. The first one is done for you.

Example: \(25 \div 3\)

a. [Array representation]

b. [Area representation]

Quotient = 8 Remainder = 1

3. \(44 \div 7\)
 a. [Array representation]
 b. [Area representation]

4. \(34 \div 6\)
 a. [Array representation]
 b. [Area representation]

5. \(37 \div 6\)
 a. [Array representation]
 b. [Area representation]

6. \(46 \div 8\)
 a. [Array representation]
 b. [Area representation]
Show the division using disks. Relate your work on the place value chart to long division. Check your quotient and remainder by using multiplication and addition.

1. \(7 ÷ 3\)

<table>
<thead>
<tr>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

quotient = _________
remainder = _________

Check Your Work:

\[
\begin{array}{c}
3 \\
\times 3 \\
\hline
2
\end{array}
\]

2. \(67 ÷ 3\)

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

quotient = _________
remainder = _________

Check Your Work:

\[
\begin{array}{c}
3 \\
\times 3 \\
\hline
2
\end{array}
\]

3. \(5 ÷ 2\)

<table>
<thead>
<tr>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

quotient = _________
remainder = _________

Check Your Work:

\[
\begin{array}{c}
2 \\
\hline
\end{array}
\]
4. $85 \div 2$

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
</table>

\[
\begin{array}{c|c}
2 & 85 \\
\end{array}
\]

Quotient = ______

Remainder = ______

Check Your Work

5. $5 \div 4$

<table>
<thead>
<tr>
<th>Ones</th>
</tr>
</thead>
</table>

\[
\begin{array}{c}
4 \left| 5 \\
\end{array}
\]

Quotient = ______

Remainder = ______

Check Your Work

6. $85 \div 4$

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
</table>

\[
\begin{array}{c|c}
4 & 85 \\
\end{array}
\]

Quotient = ______

Remainder = ______

Check Your Work
Show the division using disks. Relate your model to long division. Check your quotient and remainder by using multiplication and addition.

1. \(7 \div 2 \)

 \[
 \begin{array}{c|c}
 \text{Tens} & \text{Ones} \\
 \hline
 2 & 7
 \end{array}
 \]

 quotient = \\
 remainder =

2. \(73 \div 2 \)

 \[
 \begin{array}{c|c}
 \text{Tens} & \text{Ones} \\
 \hline
 2 & 7 \ 3
 \end{array}
 \]

 quotient = \\
 remainder =

3. \(6 \div 4 \)

 \[
 \begin{array}{c|c}
 \text{Ones} \\
 \hline
 4 & 6
 \end{array}
 \]

 quotient = \\
 remainder =

Check Your Work
4. \(62 \div 4 \)

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 \[6 \ 2 \]

quotient =

remainder =

Check Your Work

5. \(8 \div 3 \)

<table>
<thead>
<tr>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

3 \[8 \]

quotient =

remainder =

Check Your Work

6. \(84 \div 3 \)

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 \[8 \ 4 \]

quotient =

remainder =

Check Your Work

Lesson 17: Represent and solve division problems requiring decomposing a remainder in the tens.

Date: 8/28/13

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Solve using the standard algorithm. Check your quotient and remainder by using multiplication and addition.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 84 ÷ 2</td>
<td>2. 84 ÷ 4</td>
</tr>
<tr>
<td>3. 48 ÷ 3</td>
<td>4. 80 ÷ 5</td>
</tr>
<tr>
<td>5. 79 ÷ 5</td>
<td>6. 91 ÷ 4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7.</td>
<td>91 ÷ 6</td>
</tr>
<tr>
<td>8.</td>
<td>91 ÷ 7</td>
</tr>
<tr>
<td>9.</td>
<td>87 ÷ 3</td>
</tr>
<tr>
<td>10.</td>
<td>87 ÷ 6</td>
</tr>
<tr>
<td>11.</td>
<td>94 ÷ 8</td>
</tr>
<tr>
<td>12.</td>
<td>94 ÷ 6</td>
</tr>
</tbody>
</table>